
Effectiveness of Various Pesticides against Ticks

Effectiveness of Various Pesticides against Ticks

By the Western Connecticut State University Tickborne Disease Prevention Laboratory. April 2019.

Graph data are summarized from Eisen and Dolan (2016). Data used in graph from studies showing: the maximum time of effectiveness with at least 85% control of host-seeking *I. scapularis* nymphs using high or low pressure sprays or granules, ground treatment in woodland or residential properties, spring application of a single spray (except essential oils, which were a dual spring spray, and garlic, which showed less than 85% nymphal control).

¹Pyrethroid data: Spring application of cyfluthrin spray or cyfluthrin granules in a woodland setting (Solberg et al. 1992, summarized in Eisen and Dolan, 2016).

²Fungus: A single spring spray of *Metarhizium brunneum* (F52) on residential properties (Bharadwaj and Stafford 2010, summarized in Eisen and Dolan 2016).

² Essential oils: EcoTrol T&O spray applied 2 times in June in a woodland setting. EcoTrol T&O essential oil formulation: 10% rosemary oil, 2% peppermint oil, and 0.5% sodium lauryl sulfate with wintergreen oil, vanillin, lecithin, and butyl lactate (EcoSMART Technologies Inc., Alpharetta GA; Jordan et al. 2011, summarized in Eisen and Dolan, 2016). This formulation and product do not appear to be currently available for purchase.

^{*}Pyrethrins: Pyrethrin soap spray applied once in June in a woodland setting (Allan and Patrican 1995, summarized in Eisen and Dolan 2016).

[°]Garlic juice: A single spray application of Mosquito Barrier to lawn-forest border in residential settings. Mosquito Barrier formulation: garlic juice 99.3%, citric acid 0.5%, and potassium sorbate 0.2% (Bharadwaj et al. 2015, summarized in Eisen and Dolan 2016). This formulation acts as a tick-repellent.

Alaska yellow cedar oil: Data are not shown for the effectiveness of nootkatone or carvacrol (from Alaska yellow cedar, Chamaecyparis

nootkatensis [D. Don] Spach), as these products are not commercially available (Dolan et al. 2009).

References cited:

Allan, S. A. and L. A. Patrican. 1995. Reduction of immature *Ixodes scapularis* (Acari: Ixodidae) in woodlots by application of desiccant and insecticidal soap formulations. J. Med. Entomol. 32: 16-20.

Bharadwaj, A., and K. C. Stafford. 2010. Evaluation of *Metarhizium anisopliae* strain F52 (Hypocreales: Clavicipitaceae) for control of *Ixodes scapularis* (Acari: Ixodidae). J. Med. Entomol 47: 862–867.

Bharadwaj, A., L. E. Hayes, and K.C. Stafford, III. 2015. Effectiveness of garlic for the control of *Ixodes scapularis* (Acari: Ixodidae) on residential properties in western Connecticut. J. Med. Entomol. 52: 722-725.

Dolan, M. C., R. A. Jordan, T. L. Schulze, C. J. Schulze, M. C. Manning, D. Ruffolo, J. P. Schmidt, J. Piesman, and J. J. Karchesy. 2009. Ability of two natural products, nootkatone and carvacrol, to suppress *lxodes scapularis* and *Amblyomma americanum* (Acari: lxodidae) in a Lyme disease endemic area of New Jersey. J. Econ. Entomol. 102: 2316–2324.

Eisen, L. and M. C. Dolan. 2016. Evidence for personal protective measures to reduce human contact with blacklegged ticks and for environmentally based control methods to suppress host-seeking blacklegged ticks and reduce infection with Lyme disease spirochetes in tick vectors and rodent reservoirs. J. Med. Entomol. 53: 1063-1092.

Jordan, R. A., M. C. Dolan, J. Piesman, and T. L. Schulze. 2011. Suppression of host-Seeking *Ixodes scapularis* and *Amblyomma americanum* (Acari: Ixodidae) nymphs after dual applications of plant-derived acaricides in New Jersey. J. Econ. Entomol. 104: 659-664.

Solberg, V. B., K. Neidhardt, M.R. Sardelis, F.J. Hoffmann, R. Stevenson, L. R. Boobar, and H.J. Harlan. 1992. Field evaluation of two formulations of cyfluthrin for control of *Ixodes dammini* and *Amblyomma americanum* (Acari: Ixodidae). J. Med. Entomol. 29: 634-638.